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SUMMARY To date, seven identified coronaviruses (CoVs) have been found to
infect humans; of these, three highly pathogenic variants have emerged in the 21st
century. The newest member of this group, severe acute respiratory syndrome co-
ronavirus 2 (SARS-CoV-2), was first detected at the end of 2019 in Hubei province,
China. Since then, this novel coronavirus has spread worldwide, causing a pan-
demic; the respiratory disease caused by the virus is called coronavirus disease
2019 (COVID-19). The clinical presentation ranges from asymptomatic to mild respi-
ratory tract infections and influenza-like illness to severe disease with accompany-
ing lung injury, multiorgan failure, and death. Although the lungs are believed to
be the site at which SARS-CoV-2 replicates, infected patients often report other
symptoms, suggesting the involvement of the gastrointestinal tract, heart, cardio-
vascular system, kidneys, and other organs; therefore, the following question arises:
is COVID-19 a respiratory or systemic disease? This review aims to summarize exist-
ing data on the replication of SARS-CoV-2 in different tissues in both patients and
ex vivo models.

KEYWORDS COVID-19, SARS-CoV-2, coronavirus, disease, infection, organoids, organs,
systemic

INTRODUCTION

Coronaviruses (CoVs), enveloped, nonsegmented, positive-sense single-stranded
RNA (ssRNA) viruses that belong to the Coronaviridae family, can infect both

humans and animals. To date, seven CoVs have been reported to infect humans, of
which four (human CoV-NL63 [HCoV-NL63] [1], HCoV-OC43 [2, 3], HCoV-229E [2, 3], and
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HCoV-HKU1 [4]) circulate worldwide and cause mild, seasonal respiratory tract disease.
Importantly, three of seven CoVs emerged in the 21st century and are associated with
severe acute respiratory tract infections. Severe acute respiratory syndrome CoV (SARS-
CoV) emerged in late 2002 in Guangdong province, China, and spread rapidly to other
countries and continents, accounting for ;8,000 confirmed cases and a fatality rate of
9.6% (5, 6). SARS-CoV is a betacoronavirus that originated in horseshoe bats and subse-
quently leaked into the population of wild animals, including palm civets, in China; the
virus adapted and ultimately was transmitted to humans by direct animal–human con-
tact (7). Even though human-to-human transmission of the virus was efficient, the epi-
demic burned out in May 2004 due to the seasonal nature of the virus and imposed
health care measures; since then, no case of SARS-CoV has been reported. Middle East
respiratory syndrome CoV (MERS-CoV) emerged 10 years later and caused outbreaks in
Saudi Arabia and South Korea (8, 9). Similar to SARS-CoV, MERS-CoV originated in bats,
but dromedary camels were identified as an intermediate host (10). It is still not clear
how the virus was transmitted between these animals, and one may speculate that
another intermediate host may have been involved (11). While human-to-human trans-
mission of MERS-CoV accounts for almost half of cases, it is limited to households or
nosocomial outbreaks, and close and prolonged contact is required (12). Despite that,
MERS has accounted for ;2400 cases in the last 8 years, with an unsettling fatality rate
of 34% (13). These two highly pathogenic coronaviruses caught the attention of
researchers and triggered the number of studies on the potential of zoonotic coronavi-
ruses to cause pandemics in humans. The discovery of a large pool of SARS-like corona-
viruses in bats in Yunnan, China (14), led to the conclusion that we may encounter the
SARS virus again. Indeed, 2019 brought us such a novel zoonotic coronavirus, which
appears to be a close relative of the 2002 SARS-CoV. Severe acute respiratory syndrome
CoV 2 (SARS-CoV-2) emerged in Hubei province, China (15). The virus, initially named
“2019-nCoV,” belongs to the SARS-like virus cluster (15, 16) and shares 86% homology
on the nucleotide level with the first detected SARS-CoV (17). The disease caused by
the virus was named coronavirus disease 2019 (COVID-19). The clinical picture ranges
from asymptomatic, through mild respiratory tract infections and influenza-like illness
(mainly fever, cough, and fatigue), to severe disease with accompanying lung injury,
multiorgan failure, and death (18, 19). Unsurprisingly, the lungs are the main gate of
infection; however, SARS-CoV-2 RNA was detected in the kidneys, liver, heart, brain,
and blood samples at autopsy (20). This is in agreement with reports showing that
COVID-19 patients frequently exhibit other symptoms, suggesting multiorgan involve-
ment and a rare but severe complication of SARS-CoV-2 replication, which is a multisys-
tem inflammatory syndrome (MIS) in children (MIS-C) and adults (MIS-A) (21–30). This
review aims to summarize and pull together existing data about the replication of
SARS-CoV-2 in different tissues.

HOST FACTORS DETERMINING CELL TROPISM

Virus entry into a cell is a complex process that requires both viral and cellular fac-
tors. The first steps are interaction with an adhesion receptor, binding to the entry re-
ceptor, cell internalization/fusion, and transport to the site of replication (cytoplasm or
nucleus). Coronavirus particles comprise at least four structural proteins: spike (S), en-
velope (E), membrane (M), and nucleocapsid (N). Schematic SARS-CoV-2 structure and
protein localization are presented in Fig. 1.

The S protein is responsible for receptor binding and determines the host range
and cell tropism (31). This large protein comprises a short C-terminal tail located inside
the virion, a transmembrane domain, a rod-like S2 domain responsible for the fusion
process, and a large globular S1 domain, within which the receptor-binding domain is
located. In advance of interaction with the entry receptor, the virus binds to adhesion
receptors; this concentrates the virus on the cell surface. Next, the virus binds to the
entry receptor, which initiates a fusion of the viral and cellular membranes. Finally, the
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viral nucleoprotein enters the cytoplasm. The adhesion and entry receptors used by
human coronaviruses (32–42) are presented in Fig. 2.

The in vitro and ex vivo models that are permissive to infection by SARS-CoV-2 are
listed in Tables 1 and 2.

The internalization site depends on the availability of the proteases required to trig-
ger a transformation of the S protein into the fusogenic state. In vitro models show
that human coronaviruses use an endocytic entry pathway in which gradual acidifica-
tion of the microenvironment activates endosomal cathepsin B (catB) and cathepsin L
(catL), which effectively prime the S protein and initiate entry (43, 44). However, recent
studies showed that human coronaviruses bypass this process and use serine pro-
teases (transmembrane protease serine 2 [TMPRSS2], kallikrein 13) present on the cell
surface (Fig. 2). In such cases, the fusion occurs on the cell surface and endocytosis is
not required (45–50). Interestingly, the concentration of cathepsins in the endosomal
compartments of primary cells lining the respiratory tract is too low for virus activation.
Endocytosis does not allow virus fusion in vivo.

Focusing on SARS-CoV-2, Sungnak et al. (48) evaluated the expression of angioten-
sin (Ang)-converting enzyme 2 (ACE2), which is an entry receptor for this virus (40),
and of TMPRSS2 (a spike-priming protease) in different cell types. For their study, they
used single-cell RNA sequencing (scRNA-seq) data sets from healthy donors generated
by the Human Cell Atlas consortium. The authors focused mainly on evaluating the
expression of ACE2 in epithelial cell types within the lung and airways. They found that
even though the level of ACE2 expression was in general low, it was expressed by
numerous epithelial cell types (e.g., alveolar type II [AT2], bronchial secretory, ciliated,
and basal), with higher expression levels detected on nasal goblet and ciliated cells
(48). Interestingly, although the lungs are considered to be the SARS-CoV-2 target
organ, only ;2% of cells in this tissue are ACE2 positive, whereas ACE2-positive cells
are found extensively in the small intestine, gallbladder, kidneys, testes, thyroid, adi-
pose tissue, heart muscle, vagina, breast, ovary, and pancreas (51, 52). To give some
examples, high ACE2 expression was found in ileal epithelial cells (about 30% of cells
were found to be ACE2 positive). High expression of this protein was also found in
myocardial cells and kidney proximal tubule cells (7.5% and 4% positive, respectively)
(52). The widespread tissue distribution of the ACE2 protein explains the multiorgan
dysfunction reported in patients. Moreover, it draws attention to the fact that COVID-
19 may be a systemic disease.

THE RESPIRATORY TRACT

The novel human coronavirus mainly affects the respiratory system, causing a respi-
ratory disease characterized by cough (mostly dry), dyspnea, fatigue, and, in severe
cases, pneumonia or respiratory failure (corroborated by radiographic bilateral ground-

FIG 1 Schematic structure of the SARS-CoV-2 virion.
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FIG 2 The entry of human coronaviruses into the host cell. Coronaviruses first interact with an adhesion molecule (e.g., heparan
sulfate proteoglycans [HSPGs] for HCoV-NL63 [32], SARS-CoV [33], and [possibly] SARS-CoV-2 [409]; N-acetyl-9-O-acetylneuraminic acid

(Continued on next page)
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glass opacity) (53–55). Damage to the airway tract and lungs was evident during bi-
opsy and autopsy studies (53–55). Diffuse alveolar damage (DAD) and airway inflam-
mation have been reported both in humans and in nonhuman primates (53, 56–63).
The leading cause of mortality for SARS-CoV-2 is respiratory failure from acute respira-
tory distress syndrome (ARDS) (64). ARDS can be related to airway remodeling caused
by pulmonary fibrosis and systemic inflammation (65, 66). The exact molecular mecha-
nism of airway remodeling during the COVID-19 remains unknown and is associated
with both viral replication in the tissue and dysregulation of natural pathways such as
cytokine production or oxidative stress. Finally, the identification of viral cellular targets
may shed some light on potential therapeutic and preventive strategies that may be
used in COVID-19 patients with ARDS in the future.

While it is known that the respiratory tract is an entry point for SARS-CoV-2, it is vital
to identify the cells that are the primary targets of the infection. First, in vitro analyses
carried out by Hoffmann et al. demonstrated that SARS-CoV-2 pseudoviruses entered
human cell lines derived from the airways, including Calu3, A549, BEAS-2B, and H1299
cells (49), with Calu3 cells being the most permissive (49). While efficient SARS-CoV-2
replication in the Calu3 cell line was also demonstrated by others (54, 67–71), A549
cells were not found to be permissive unless they overexpressed ACE2 (54, 70, 72–75).

Data mining allowed the identification of cell types that may be permissive to infec-
tion in vivo (48, 52, 73, 76–78). The cells present in the human respiratory tract are
shown in Fig. 3. In general, lung and bronchial tissues show low expression of ACE2
(73, 79); alveolar type II cells (AT2) show higher expression of ACE2 and TMPRSS2 (48,
49, 52, 77, 80–82). Hikmet et al. reported expression of ACE2 in more than 150 cell
types from different tissues (immunohistochemical analysis) (73), but in that study, the
level of expression of ACE2 in the respiratory system was limited. Aguiar et al. showed
similar results using microarrays and scRNA-seq data set analysis (79). Sungnak et al.
reported high expression of both ACE2 and TMPRSS2 in nasal goblet and ciliated cells
(48). They corroborated these results by performing an independent scRNA-seq study
of nasal brushings and studies using an in vivo nasal human airway epithelium (HAE)
model. In accordance with those results, Lukassen et al. evaluated healthy human lung
tissues (biopsy specimens) and bronchial HAE air-liquid interphase (ALI) cultures
(HBEC); they reported that “transient secretory cells” showed expression of ACE2 and
TMPRSS2 (81). These cells were reported to be cells transiting from a club or goblet
phenotype to a differentiated ciliated phenotype (81). Tindle et al. demonstrated the
expression of ACE2 in club cells using immunofluorescence staining of human lung
sections from infected and noninfected patients (66). Zhang et al. analyzed airway epi-
thelia using bulk RNA sequencing, scRNA-seq, and microarrays. They found that ACE2
is expressed in basal, club, goblet, and ciliated cells of the small airway, large airway,
and trachea (83). Valyaeva et al. proposed that levels of expression of ACE2 and other
SARS-CoV-2 entry factors might be underestimated when using 39 scRNA-seq data sets
rather than full-length scRNA-seq data. They showed that ACE2 levels in basal cells
were almost 10 times higher when evaluated using full-length scRNA-seq data, which
is in accordance with results of ex vivo lung experiments showing basal cell infection
(425).

Different approaches have been used to identify the cells that constitute the real
targets for the virus; studies have examined primary human airway cells, tissue
explants, and tissue cultures (49, 80, 84–87). Zhang et al. and Tindle et al. reported
high expression of the viral N protein in alveolar epithelial cells within immunostained

FIG 2 Legend (Continued)
[Neu5Ac] for HCoV-HKU1 and HCoV-OC43 [34]; or carcinoembryonic antigen-related cell adhesion molecule 5 [CEACAM5] for MERS-
CoV [35]). Next, the virus interacts with the entry receptor (aminopeptidase N [APN] for HCoV-229E [36]; dipeptidyl peptidase 4
[DPP4] for MERS-CoV [37]; 9-O-acetylated sialic acid for HCoV-OC43 [39]; or angiotensin-converting enzyme 2 [ACE2] for HCoV-NL63,
SARS-CoV, and SARS-CoV-2 [40]). Recently, neuropilin 1 (NRP1) was reported to enhance the SARS-COV-2 entry (41, 42). To enter the
cell, the S protein requires proteolytic priming, which may occur on the cell surface (TMPRSS2, TMPRSS4, kallikrein 13) or after
endosomal entry (cathepsin B [catB] and cathepsin L [catL]) (43–50, 410–414).

SARS-CoV-2: a Systemic Infection Clinical Microbiology Reviews

April 2021 Volume 34 Issue 2 e00133-20 cmr.asm.org 5

 on January 14, 2021 by guest
http://cm

r.asm
.org/

D
ow

nloaded from
 

https://cmr.asm.org
http://cmr.asm.org/


lung tissue biopsy specimens from a SARS-CoV-2-infected patient, suggesting that
these cells may be effectively infected (53, 66). Hui et al. used ex vivo cultures of human
bronchus and lung to show that AT1 cells, ciliated cells, club cells, and goblet cells, but
not basal cells, are susceptible to SARS-CoV-2 infection (85). They also showed that the
level of SARS-CoV-2 replication was higher than that of SARS-CoV in ex vivo bronchial
cultures. Zhou et al. also demonstrated higher infectivity and replication of SARS-CoV-
2 than SARS-CoV in the airway organoids and confirmed the observation using subge-
nomic mRNA analysis, transmission electron microscopy (TEM), and immunofluores-
cence staining (88). Likewise, Chu et al. demonstrated replication and cell tropism of
SARS-CoV-2 and SARS-CoV using ex vivo lung explants (80). The authors used plaque
assay, quantitative reverse transcription-PCR (RT-qPCR), and confocal microscopy to
show that SARS-CoV-2 infected and replicated more efficiently in human lung tissues
than SARS-CoV. These findings are in agreement with results of studies performed with
the Calu3 cell line (80, 85). The human airway epithelium (HAE) cultures are ALI models,
which are used commonly to study human respiratory tract diseases due to their re-
semblance to in vivo airway tissue (89–91). The ALI methodology promotes epithelial
cell differentiation into different cell types (e.g., basal, ciliated, club, and goblet cells);
besides, it allows the production of mucus and beating cilia, thereby providing a more
reliable model of virus infection and cell tropism than traditional cell culture models
(92–96). The first study to use HAE as a model for SARS-CoV-2 was presented by

TABLE 1 Cell lines that support the replication of SARS-CoV-2

Cell line Origin Species CPEa Additional information (reference[s]) Reference
Caco-2 Colorectal adenocarcinoma Human 1/2 Robust replication, no cell death detected, also

susceptible to SARS-CoV, one group reports
visible cytopathic effect (131)

54, 80, 130, 131

Calu3 Lung adenocarcinoma Human 1/2 Robust replication, no cell death detected, also
susceptible to SARS-CoV, some groups report
visible cytopathic effect (71, 415)

67–71, 80, 130,
331, 415–419

C2BBe1 (Caco-2
subclone)

Colorectal adenocarcinoma Human 2 Robust replication, highly permissive (higher virus
titer than a parental line), no cell death detected

130

T84 Colorectal adenocarcinoma Human 2 Robust replication 128
CL14 Colorectal adenocarcinoma Human 1 Robust replication. Also susceptible to SARS-CoV 131
Huh7 Hepatocellular carcinoma Human 2 Robust (80) or modest (416) replication; also

susceptible to SARS-CoV
80, 416

293T Embryonic kidney epithelia Human 2 Robust (80) or modest (416) replication; also
susceptible to SARS-CoV

80

U251 Glioblastoma Human 2 Modest replication 80
hiPSC-MC Induced pluripotent stem

cell-derived
cardiomyocytes

Human 1 Cessation of beating after 72 h of infection 242

hPSC hPSC-derived pancreatic
endocrine cells

Human 2 Alpha, beta, and delta cells; alpha and beta cells
were permissive for VSV-based SARS-CoV-2
pseudoviruses

309

BEAS-2B Nontumorigenic bronchial
epithelium

Human 2 The entry of pseudoparticles harboring spike protein 49

H1299 Non-small-cell lung
carcinoma

Human 2 The entry of pseudoparticles harboring spike protein 49, 415

Vero E6 Kidney African green
monkey

1 Robust replication, cell rounding, detachment,
degeneration, and syncytium formation; also
susceptible to SARS-CoV

69, 70, 80, 416,
418, 420

FRhK4 Kidney Rhesus
monkey

1 Robust replication, cell rounding, detachment,
degeneration, and syncytium formation; also
susceptible to SARS-CoV

80

LLC-MK2 Kidney Rhesus
monkey

2 Robust replication; also susceptible to SARS-CoV 80

CRFK Kidney Cat 2 Also susceptible to SARS-CoV 80
RK-13 Kidney Rabbit 2 Also susceptible to SARS-CoV 80
PK-15 Kidney Pig 1/2 Robust replication; also susceptible to SARS-CoV 80, 130
IPEC-J2 Intestine Pig 2 Modest replication 130
aCPE, cytopathic effect.1, positive;2, negative;1/2, ambiguous result.
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Milewska et al. (97). The quantitative results indicated that the virus infects ciliated cells
and is released on the apical side of the culture, not the basolateral side; this means
that viral infection is effective in the airway lumen (97). Subsequent reports by others
confirmed these observations (15, 98–101). Zhu et al. reported that ciliated, club, and
goblet cells were infected in their HAE model and that the cytopathic effect (CPE) was
observed (101). Ravindra et al. showed that the virus primarily infects ciliated cells and
that during infection other cells (basal and club) can become infected (97, 102). They
used scRNA-seq to show that goblet cells, neuroendocrine cells, tuft cells, and mono-
cytes are rarely infected (102). TEM revealed that infection of human airway epithelial
models of nasal and bronchial origin induced remodeling of the cellular ultrastructure
of the ciliated, goblet, and (to a lesser extent) basal cells (102, 103). Following the
results obtained reported by Ravindra et al., Mulay et al. used immunostaining to dem-
onstrate that SARS-CoV-2 predominantly infected ciliated cells and a small portion of
goblet cells in their HAE model (100). The HAE model has also been efficiently used by
different research groups to evaluate different SARS-CoV-2 inhibitors (67–69, 72, 100,
104–106), suggesting that it is also a suitable model for this approach. Pei et al. showed
that human embryonic stem cell (hESC)-derived organoids reflected the natural micro-
environment. In this model, more than 90% of ciliated cells, less than 10% of club cells,
and no basal or goblet cells were infected with SARS-CoV-2 (107). Tindle et al. devel-
oped an adult stem cell-derived human lung organoid model composed of both proxi-
mal and distal airway epithelia. They showed that the proximal airway epithelium is

TABLE 2 Ex vivomodels used to study SARS-CoV-2 infection

Model Additional information References
Human airway epithelium (HAE)
cultures, ALI cultures

Also susceptible to SARS-CoV; the virus infects primarily ciliated cells; cessation of
cilium beating

15, 67–69, 81, 98,
102–105, 421, 422

Primary human airway epithelial cells Also susceptible to SARS-CoV 49
Primary cell-derived lung organoids Also susceptible to SARS-CoV; SARS-CoV-2 infection of ciliated and basal cells 88
hPSC-derived lung and macrophage
coculture system

M2 and M1macrophages have inhibitory effects on SARS-CoV-2 infection 62

hPSC-derived lung organoids Mainly composed of AT2 and AT1 cells 108
Human lung organoids with mixed
proximodistal epithelia

Composed of both proximal and distal airway epithelia 66

Human embryonic stem cell (hESC)-
derived organoid

Differentiated human airway organoids from hESC 107

3D alveolar organoids Distal lung epithelial cells with or without lung fibroblasts 100, 107, 110–112
Lung-on-chip Cultures are composed of human airway epithelial and endothelial cells;

macrophages were also present in some experiments
423, 424

hESC-derived SEAM eye organoids Organoids are composed of four distinct zones of ocular tissues, including retinal
pigment epithelium (RPE), neural retina, ciliary body, lens, and cornea; highly
active SARS-CoV-2 replication in the corneal limbus

347

Human intestinal organoids (HIOs) The virus replicates in enterocytes, cytopathic effect; also susceptible to SARS-CoV 123, 126, 136
hPSC-derived colon organoids
(hPSC-COs)

hPSC-derived organoids, composed of enterocytes, goblet cells, transit-amplifying
(TA) cells, enteroendocrine (EE) cells, and LGR51 or BMI11 stem cells; viral RNA
was detected in all five cell populations

108

Human gastric organoids (HGOs) Organoids derived from human fetal and pediatric tissue; standard and reversed-
polarity organoids included; robust viral replication in pediatric-derived
organoids but not fetal ones

137

Human tonsil organoids Obtained from tonsil tissues, secretion of the progeny viral particles 246
Human blood vessel organoids iPSC-derived organoids, infectious viral progeny production 98
Human kidney organoids iPSC-derived organoids, infectious viral progeny production 98
Human liver ductal organoids Robust replication in cholangiocytes 298
Human bronchial organoids (HBOs) Generated from commercially available cryopreserved human bronchial epithelial

cells
84

Human brain organoids iPSC-derived organoids; SARS-CoV-2 enters into neuronal cells and targets cortical
region, but replication is probably abortive; neuronal cell death

317, 318

hPSC-derived choroid plexus
organoids

Simulated the blood-cerebrospinal fluid barrier; productive SARS-CoV-2
replication was observed, with SARS-CoV-2 preferentially infecting the choroid
plexus epithelium

318, 335

Bat intestinal organoids Progressive cytopathic effect 126
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more permissive to SARS-CoV-2 than the distal alveolar tissue (66). Han et al. demon-
strated SARS-CoV-2 pseudovirus entry and SARS-CoV-2 infection in a human pluripo-
tent stem cell (hPSC)-derived lung organoid model composed mainly of AT2 cells, AT1
cells, stroma cells, neuroendocrine cells, and airway epithelial cells (108). Similarly,
Huang et al. proved the infection of iAT2 (AT2 cells derived from induced pluripotent
stem cell [iPSC]) organoids in ALI culture (109) and Youk et al. the infection of the alve-
olar stem cell-derived organoids (110). The results obtained by others (100, 107, 111,
112) are consistent with these observations.

THE GASTROINTESTINAL TRACT

Although coronaviral infections in humans are associated mainly with respiratory
tract disease, accompanying symptoms in the gastrointestinal (GI) tract have been
reported (113–119). According to one study, during a SARS-CoV outbreak in March
2003 in Hong Kong, 19.6% of infected patients developed nausea, diarrhea, and/or
vomiting (113). Another study reported that 38% of patients experienced diarrhea
during their illness (114). Interestingly, some patients (5.8%) with fever and diarrhea
did not develop a respiratory disease (114). Consequently, viral replication in the
small and large intestine of patients with SARS-CoV was confirmed (114). Infection
by the second highly pathogenic coronavirus, MERS-CoV, was also associated with
GI symptoms. Descriptive studies from 2012 to 2013 reported that a quarter of
MERS-positive patients had accompanying GI symptoms, including diarrhea and
vomiting (119). Importantly, not only highly pathogenic coronaviruses but also sea-
sonal human coronaviruses are associated with GI infections. As an example, 33%
of HCoV-NL63-positive patients and 57% of HCoV-OC43-positive patients in France
developed digestive problems such as abdominal pain, diarrhea, and vomiting
(116, 118). These data clearly show that the fecal-oral route of coronavirus transmis-
sion is an important research area that needs further investigation during the
COVID-19 pandemic.

After the emergence of SARS-CoV-2, it was observed that COVID-19 patients often
suffered from GI tract disease symptoms (120, 121) and that up to 53% of patients

FIG 3 Cell types and their localization within the human respiratory tract.
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infected with SARS-CoV-2 tested positive for viral RNA in stool specimens (117, 122,
123). Moreover, viral RNA can be detected in fecal samples for up to 5weeks after re-
spiratory samples become virus negative. In contrast, in some patients, an occurrence
of GI tract symptoms does not correlate with the detection of viral RNA in fecal sam-
ples (124). Some may speculate that such symptoms may be related to alterations in
the gut microbiota and/or dysbiosis during COVID-19 (125). These findings make it
uncertain whether SARS-CoV-2 replicates in the GI tract. Immunostaining of viral pro-
teins in gastrointestinal tissue samples collected from affected patients shed some
light on this by providing evidence for viral replication within these tissues, suggesting
that the fecal-oral route is indeed a relevant transmission route (117). Moreover, some
groups have reported successful isolation of infectious virus from stool samples (126,
127).

Efforts to model GI infection in vitro led to identification of four colon carcinoma
cell lines (human intestinal epithelial cells [IECs]) that are permissive to SARS-CoV-2
infection: Caco-2 (49, 128) (also susceptible to the SARS-CoV infection) (129); C2BBe1,
the Caco-2 brush border-expressing subclone (130); CL14 (131); and T84 (128).
However, most niche-mimicking models and models of the GI tract are based on the
use of human intestinal organoids (HIOs), which are currently the most advanced tool
available. HIOs are differentiated, nontransformed, and physiologically active cultures,
containing multiple intestinal epithelial cell types such as enterocytes, goblet cells, tuft
cells, enteroendocrine cells (EECs), and Paneth cells (132). Cell types present in intes-
tines are shown in Fig. 4. Importantly, a recent study showed that HIOs allow replica-
tion of MERS-CoV (133), along with other viruses that could not be cultured using the
standard cell lines (134, 135). HIOs, which can be grown in three-dimensional (3D) or
2D monolayers, support replication of SARS-CoV-2 and SARS-CoV in the ileum, duode-
num, and colon-derived organoids (126, 128, 136). Importantly, the intestines are not
the only affected part of the digestive system; viral nucleocapsid protein was visualized
in gastric tissue derived from COVID-19 patients (117). Unsurprisingly, human gastric
organoids (HGOs) derived from pediatric patients supported SARS-CoV-2 replication
(137). Of note, human organoids are not the only organoids permissive to novel coro-
navirus; bat intestinal organoids also support SARS-CoV-2 infection, which is in agree-
ment with the virus origin predictions (126, 138).

Generally, ACE2 is an entry receptor for the virus, and TMPRSS2 is the spike priming
protease. Intriguingly, the level of ACE2 expression in intestinal tissues is much higher

FIG 4 Cell types and their localization in the human intestine.
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than that seen in the lungs (139). To be more precise, ACE2 is abundantly expressed in
stomach epithelial cells and in enterocytes from the small intestine, including the duo-
denum, jejunum, and ileum, and it is poorly expressed in colonocytes (140).
Unsurprisingly, human colonoids are affected to a lesser extent than organoids deriv-
ing from the small intestine (128, 136). Consequently, SARS-CoV and SARS-CoV-2 infect
only enterocytes and not goblet cells, EECs, tuft cells, or Paneth cells (123, 136). Mature
enterocytes express higher ACE2 levels than immature ones, but the levels of replica-
tion are comparable. This may indicate that a low level of ACE2 expression is sufficient
for the virus to enter the cell (123, 136) or that there is an additional restriction factor
present in mature enterocytes. What is interesting is that ACE2 expression increases
during gastric (141) and colorectal (142) cancer development. Increased expression of
ACE2 is also observed in patients with inflammatory bowel disease (IBD) (143, 144).
Although ACE2 is not the only factor required during the infection, one might think
that cancer or/and IBD patients might experience more-severe gastrointestinal symp-
toms. Nevertheless, it is still an understudied research area that needs to be addressed.
Human intestinal enteroid monolayer models confirmed that SARS-CoV-2 efficiently
infects and replicates in the enterocytes and that the virus is released from the apical
side (123). Except for ACE2, there are additional “players” during virus entry, and in
intestines, the spike protein, similarly to other organs, is primed by TMPRSS2 (49) and
possibly also by TMPRSS4 (123). As in the case of the respiratory tract, the role of cathe-
psins in in vivo and ex vivo activity seems to be limited.

Nevertheless, one can imagine that bowel inflammation can lead to the “leaky gut”
syndrome. This may result in systemic distribution of the virus and infection of other
organs, for example, the lungs or heart. No reports have shown that the infectious virus
can be found in blood, but viral RNA was found in 15% of plasma samples from
COVID-19 patients in one study (139). Further, the systemic distribution of the virus
confirms that SARS-CoV-2 may be spread either by blood or by blood cells. A similar
study was carried out for MERS-CoV, when humanized dipeptidyl peptidase 4 (DPP4)
mice were intragastrically administered with the virus; in addition to GI disease, ani-
mals developed lung and brain infections (133). If the situation is similar in COVID-19
patients, the results may support clinical reports suggesting that gastrointestinal tract
disease precedes respiratory tract symptoms (145). While infectious viral progeny are
produced by gut organoids (136) and infectious SARS-CoV-2 can be isolated from stool
samples (126, 127), the importance of the fecal-oral transmission route for SARS-CoV-2
remains unclear. Although the GI tract seems to be a replication site, it is worth men-
tioning that in order to employ this route, the virus needs to cross the GI tract and
remain infectious. This is questionable, as the recombinant SARS-CoV-2 mNeonGreen
reporter virus was previously shown to be susceptible to inactivation by human gastric
fluids (123). A similar phenomenon was reported for MERS-CoV, wherein the virus
appeared to be tolerant of gastric and intestinal fluids produced during the fed state
but not during fasting (133). Taking the data altogether, it remains unclear whether
the GI tract can serve as the primary site of infection. Further investigations and devel-
opment of appropriate animal models are needed.

THE CARDIOVASCULAR SYSTEM

The cardiovascular system was also thought to be a target for SARS-CoV-2 infection.
Cardiovascular sequelae have been reported for other highly pathogenic human coro-
naviruses. In SARS-CoV patients, these are usually mild and self-limiting (146), but
MERS-CoV is associated with acute myocarditis and heart failure (147). It is well recog-
nized that patients with preexisting cardiovascular diseases are more likely to suffer
COVID-19 complications and to require admission to an intensive care unit (ICU)
(148–154). Furthermore, myocardial injury and heart failure are considered to be
sequelae of COVID-19 (51, 152, 153, 155). Nevertheless, one may say that cardiovascu-
lar clinical manifestations may be solely the result of thrombosis.
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Vascular Events

Endothelial cells are another cell population in the lungs but also in the cardiovascular
system; importantly, they express ACE2 receptors and TMPRSS2 protease, as well as some
other molecules that may mediate infection (e.g., CD147) (140, 156–160). The presence of
SARS-CoV-2 virions was confirmed within endothelial cells; moreover, endotheliitis and ele-
vated levels of circulating endothelial cells were observed (156, 157, 161–163). Cell types
present in the cardiovascular system are shown in Fig. 5. The infection results in the pro-
duction of virulent progeny viruses, which was confirmed using human capillary organoids
(98).

Interestingly, severe illness is rare in children (164); however, several Kawasaki-like
disease cases have been reported, first in Bergamo province in Italy and in England
and later in other regions (22–24, 26, 165–175). Kawasaki disease is an acute pediatric
vasculitis of unknown origin and is associated with coronary artery aneurysms. It is
believed to be an aberrant response of the immune system and it was previously
thought to be triggered by human coronaviruses (26, 164, 166). Diagnosed children
are generally older than is usual for Kawasaki syndrome and present with more-severe
disease; some require circulatory and respiratory assistance, with coronary artery
aneurysms appearing to be frequent complications. Based on these cases, a definition
of MIS-C, also called pediatric multisystem inflammatory syndrome (PMIS/PIMS), was
formulated (21–23, 26, 27, 164, 166–168, 176). Similar symptoms were later observed
in adolescents and adults, leading to the recognition of multisystem inflammatory syn-
drome in adults (MIS-A). In contrast to other severe cases of COVID-19, patients with
MIS-C or MIS-A have minimal respiratory symptoms and often test negative in PCR
tests for SARS-CoV-2, suggesting that the symptoms constitute pathological sequelae
of the infection (25, 177–184).

The renin-angiotensin system (RAS) is believed to play a central role in the pathoge-
nesis of COVID-19, and medications that modulate the RAS pathway have been pro-
posed as potential therapeutics (185). Under physiological conditions, a decrease in

FIG 5 Cell types and their localization in the cardiovascular system.
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renal blood flow stimulates the secretion of renin and generation of angiotensin I
(AngI). The angiotensin-converting enzyme (ACE) then converts AngI to angiotensin II
(AngII), which mediates effects such as vasoconstriction; sodium and fluid retention in
a kidney; fibrosis; inflammation; and vascular permeability. It also leads to accelerated
thrombosis by activating the coagulation cascade and flux of neutrophils and macro-
phages to the affected tissues. In contrast, ACE2 generates angiotensin fragments
(Ang1 to Ang9 and Ang1 to Ang7) which have vasodilatory, anti-inflammatory, antipro-
liferative, antifibrotic, and cardioprotective properties (186–190). SARS-CoV-2 infection
facilitates loss of the ACE2 catalytic effect, downregulates its expression, and promotes
shedding from the cell surface, leading to accumulation of AngII and, through this, to
endothelial dysfunction, inflammation, and thrombosis (187, 188, 191–193). While ACE
inhibitors (ACEIs) and receptor blockers (ARBs) might be beneficial, the advisability of
their usage is debatable (185, 194–197).

Furthermore, coagulopathy and resulting thromboembolic events were observed in
COVID-19 patients. Importantly, these conditions were recognized as a cause of death
in up to one-third of cases (158, 198–203). In consequence, the International Society
on Thrombosis and Hemostasis recommends prophylactic doses of low-molecular-
weight heparin (LMWH) for all patients who require hospital admission (202–204),
which results in significantly lower mortality (205, 206). Interestingly, this result is a
consequence not only of anticoagulative activity of LMWH but also of its anti-inflam-
matory activity and LMWH-mediated inhibition of viral adhesion to the cells (205–209).
The exact mechanism underlying coagulopathy is unknown; however, recent reports
suggest a role of RAS axis dysregulation, inflammation and complement activation, for-
mation of neutrophil extracellular traps (NETs), prolonged immobilization of patients,
and activation of endothelial cells and platelets (161, 210–218). Endothelial cells are in
constant contact with blood and endothelial glycocalyx, providing anticoagulant prop-
erties and preventing platelet activation and aggregation. Endothelial damage may
easily alter this situation and contribute to the development of disseminated intravas-
cular coagulation. Additionally, while formation of NETs is part of the body’s defense
against pathogens, dysregulation of this process during COVID-19 may also result in
endothelial damage and blood vessel occlusion. Consequently, SARS-CoV-2 may con-
tribute to the hypercoagulation observed in patients and multiorgan failure in more-
severe cases (158, 159, 161, 199, 216, 217, 219–226). Among the other SARS-CoV-2
manifestations most likely related to endothelial damage are chilblain-like skin lesions,
also known as “COVID toes.” While, based on PCR data, evidence of infection is not
consistently found, viral particles and proteins were previously observed in endothelial
cells from skin biopsy specimens (227–229).

The Heart

There are several hypotheses about the mechanism of underlying cardiac injury during
the course of COVID-19; these include direct injury mediated by SARS-CoV-2 virus invasion,
pulmonary infection, induced severe cases of hypoxia resulting in damage to myocardial
cells, cardiotoxicity of antiviral drugs, and indirect damage mediated by excessive inflam-
matory responses. Such indirect damage is especially relevant in patients with preexisting
conditions, as inflammation may be associated with rupture of the coronary atheroscler-
otic plaques. Furthermore, endothelial cell damage and loss of the cardioprotection pro-
vided by Ang1 to Ang7 may also lead to myocardial injury (150, 155, 230–238). Several
reports document elevated levels of serum troponin, creatinine kinase, and lactate dehy-
drogenase in individuals with COVID-19 (51, 150–152, 155, 230, 239–241). A higher con-
centration of troponins, reflecting cardiac injury, is present in 5% to 27.8% of hospitalized
patients and is associated with significantly worse prognosis and increased risk of mortality
(151, 152, 155, 230, 242, 243). High expression of ACE2 in the heart suggests that direct
injury is possible (152, 231, 244); indeed, pericytes are thought to be the target cardiac
cells for SARS-CoV-2 due to high ACE2 expression (220, 240). Viral particles have been
detected in cardiac tissue (157, 245), and viral replication was shown in human induced
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pluripotent stem cell (iPSC)-derived cardiomyocytes which led to visible cytopathic effects
and a decrease in contractility (242).

THE IMMUNE SYSTEM

At the moment, not much data concerning the effects of SARS-CoV-2 on the
immune system are available. Palatine tonsils are among the first lines of defense, and
SARS-CoV-2 was reported to infect and replicate in 3D tonsil organoids, reflecting the
in vivo tonsil epithelium (246). Further, other organs responsible for the immune
responses were investigated, and cell degeneration or necrosis was also observed in
the spleen (220, 247, 248). Additionally, Diao et al. (249) showed that lymphocytopenia
is common among COVID-19 patients, and that finding was confirmed by other stud-
ies. It was suggested that components of the immune system might be infected by
SARS-CoV-2 and that poor prognoses might be related to loss of specific T-cell subsets
(250–254). It was also demonstrated that the virus infects alveolar macrophages (255),
as well as ACE2-positive and CD68-positive macrophages, and induces interleukin-6
(IL-6) secretion, which is in some cases associated with a fatal outcome (139, 220,
256–261). A similar effect was observed for SARS-CoV and MERS-CoV, and while most
laboratories report poor, incomplete, or abortive replication, these viruses seem to
prime macrophages and dendritic cells to release proinflammatory cytokines, leading
to systemic hyperinflammation (“cytokine storm”) (252, 262–267). What is more, SARS-
CoV-2 was frequently detected in monocytes and B cells and, to a lesser extent, in T
cells of COVID-19 patients. The permissiveness of these cells was further confirmed
using peripheral blood mononuclear cells (PBMCs) from healthy donors (254, 260). The
permissiveness of T-lymphocytes is noteworthy, considering the low level of ACE2
expression; however, there is a need for further study to confirm this phenomenon, as
it remains debatable (254, 268). These results are similar to those reported for MERS-
CoV, which infects T cells and induces their apoptosis; surprisingly, T cells are resistant
to infection by SARS-CoV (269). The entry of SARS-CoV-2 into lymphocytes is unex-
pected because MERS-CoV infection correlates with surface levels of DPP4 (269); how-
ever, ACE2 expression in T cells is almost nonexistent (268). An alternative route of
entry might be a CD147 receptor-dependent route, as this molecule is expressed
widely by T lymphocytes or DPP4 as the interaction between Spike S1 domain and
DPP4 was predicted. However, those data were not validated experimentally and
should be interpreted with caution (270–277). While the complement system repre-
sents the first response of the immune system to infection, there is growing evidence
that virus-induced activation of this system plays a role in COVID-19 pathogenesis.
There are still many unknowns, but postmortem analysis of COVID-19 patients with
ARDS revealed deposits of complement components, including membrane attack com-
plex (C5b-9), C3, C4, and mannose-binding lectin (MBL)-associated serine protease 2
(MASP2) (278–280). Results of animal studies showed that C3- and C4-deficient mice
exhibited lower levels of respiratory dysfunction and body weight loss than wild-type
mice. Further, C3 activation was already noted in the lungs 1 day after the infection
(280–282). Interestingly, a humanized anti-C5 antibody (eculizumab) was shown to
improve patients' parameters (283, 284).

THE KIDNEY

Acute renal injury was first considered to be an extrapulmonary clinical presenta-
tion of SARS-CoV-2 infection (285, 286). Renal involvement was first suggested in
reports describing the isolation of infectious viral particles from patients’ urine (287,
288). Chu et al. demonstrated that SARS-CoV-2 replicates in multiple kidney cell lines
(54). Among these, the virus productively replicates in CRFK (feline), PK-15 (porcine),
RK-13 (rabbit), and LLCMK2 (monkey) cells (54). They also observed SARS-CoV-2 replica-
tion in 293T human embryonic kidney cells (54). However, they observed CPE forma-
tion only in nonhuman primate kidney cell lines Vero E6 and FRhK-4, where infected
cells visibly rounded together and detached from the monolayer (54). Another recent
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study by Monteil et al. demonstrated robust SARS-CoV-2 replication in a human kidney
organoid model (98). Several RNA-seq studies identified multiple cell types in the kid-
ney that showed extensive ACE2 expression. These included podocytes, glomerular pa-
rietal epithelial cells, basal epithelial cells, and tubular epithelial cells (52, 77, 98).
Heightened expression of TMPRSS2 and cathepsin L (two suspected facilitators of
SARS-CoV-2 infection) was reported in multiple cell types in the kidney (20). Indeed,
postmortem electron microscopic analyses of kidney tissues revealed the presence of
viral particles in proximal tubules accompanied by abnormal formations of the double-
membraned vesicles (289–291). Further immunohistochemical analyses by Diao et al.
revealed the presence of macrophage and CD81 T-lymphocyte infiltrates, as well as
significant deposition of C5b-9 complement components (290), which is indicative of
cytokine release syndrome (292). Further studies are required to establish the pathol-
ogy, understand the interplay between host immunity and the infected kidney tissue,
and understand the intercellular dissemination of SARS-CoV-2 in this organ.

THE LIVER

Liver injury has been reported in some patients with severe SARS-CoV-2; the avail-
able data show that 2% to 11% of COVID-19 patients had liver comorbidities (293). This
suggests that this organ is a potential secondary infection site for SARS-CoV-2 (18,
294). Importantly, liver impairment has been previously reported in patients infected
with SARS-CoV or MERS-CoV (295, 296). Indicatively, significant elevation of serum ala-
nine aminotransferase (ALT), aspartate aminotransferase (AST), and gamma-glutamyl
transferase (GGT) levels has been reported in patients with severe SARS-CoV-2 cases
(257, 293, 297), as well as abnormal bilirubin levels (18).

Recently, replication of SARS-CoV-2 in the human hepatocellular carcinoma cell line
Huh7 was reported (54). Moreover, two separate studies on the RNA-sequence libraries
of human tissues identified the cholangiocyte as a potential target for SARS-CoV-2
infection due to high levels of ACE2 expression (52, 77). This was confirmed by Zhao
and colleagues using a human liver ductal organoid model in which they observed ro-
bust SARS-CoV-2 replication (298). Dysregulated expression of tight junction protein
claudin-1 and two bile acid transporters (apical sodium-dependent bile acid trans-
porter [ASBT] and cystic fibrosis transmembrane conductance regulator [CFTR]) was
also observed, indicating defective tight junction formation and bile transport in chol-
angiocytes due to the SARS-CoV-2 infection (298). It remains unclear whether liver
injury in severe cases of SARS-CoV-2 is due to viral infection or excessive immune
responses. Analysis of cholangiocyte intercellular interaction networks indicates possi-
ble interactions between these cells and Kupffer cells via an interaction between CD74
and macrophage migration inhibitory factor (MIF) (77), which triggers a proinflamma-
tory response in various organs (299–301). Another point of contention lies in how pre-
existing liver conditions increase the risk of severe SARS-CoV-2 infection; this is
because ACE2 expression is upregulated significantly in a cirrhotic liver (302, 303).
Conversely, Biquard et al. examined patients with metabolic-associated fatty liver dis-
ease and reported no significant change in expression levels of ACE2 or TMPRSS2 in
the liver (304). Enhanced infection models are therefore needed to evaluate the activity
of resident inflammatory cells in the liver during SARS-CoV-2 infection, along with the
relationship between changes in expression of SARS-CoV-2 receptors and lipid metab-
olism in the liver.

THE PANCREAS

The pancreas is also a potential target for SARS-CoV-2. Pancreatitis was reported in
ferrets infected with a feline coronavirus (305, 306). In the case of SARS-CoV-2, clinical
reports have described acute hyperglycemia and transient diabetes in COVID-19
patients without a history of type 2 diabetes, which may indicate pancreatic injury
(258). Of note, Liu et al. observed increased levels of amylase and lipase in the sera of
patients with severe SARS-CoV-2, and some of those patients also presented focal
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pancreatic enlargement and dilatation of the pancreatic duct under computed tomog-
raphy scanning (307). Furthermore, ACE2 is highly expressed by both pancreatic islets
and exocrine glands (307, 308). These observations suggest that SARS-CoV-2 may tran-
siently infect the pancreatic islets and disrupt glucose metabolism (258). Indeed, Yang
et al. demonstrated the permissiveness of human pancreatic alpha and beta cells to
SARS-CoV-2, using induced hPSC-derived pancreatic islets and vesicular stomatitis virus
(VSV)-based SARS-CoV-2 pseudoviruses (309). Further studies are required to deter-
mine the clinical relevance of these observations and possibly also to assess the impact
of the infection on patients’ metabolism.

THE NEUROLOGICAL SYSTEM

The involvement of human coronaviruses in a neurological disease was suggested a
long time ago. For example, an immunocompromised child with OC43 coronavirus
developed fatal progressive encephalitis (310). The neurotropic potential of OC43 and
229E coronaviruses was demonstrated through experimental infection of several
microglial, oligodendrocytic, and astrocytic cell lines (311–313). Neurological symp-
toms, including headache, confusion, and impaired consciousness, have also been
reported in some patients with COVID-19 (314–316). Modest SARS-CoV-2 replication
was observed in U251 human glioblastoma cells, which may indicate the neurotropic
potential of this virus (54). Very recently, some groups utilized a human brain organoid
model to study the pathophysiology of SARS-CoV-2 (317, 318). Although they observed
inefficient SARS-CoV-2 replication in this model, they showed that SARS-CoV-2 targets
the soma of cortical neurons and is associated with Tau missortment in the axons and
soma (317). They also observed colocalization of SARS-CoV-2 particles with Tau phos-
phorylated at threonine-231, which is associated with neuronal apoptosis and is indica-
tive of the early stage of neurodegeneration (317, 319, 320).

Different routes of coronavirus neuroinvasion have been proposed. Intranasal inoc-
ulation of transgenic mice with SARS-CoV expressing human ACE2 results in neuronal
dissemination into the brain through the olfactory bulb (321, 322). In the human brain,
ACE2 is expressed predominantly in neurons, astrocytes, and oligodendrocytes of the
middle temporal gyrus and posterior singular cortex, as well as by endothelial and arte-
rial smooth muscle cells (140, 323, 324). Unlike in mice, ACE2 and TMPRSS2 are not
expressed in the human olfactory sensory and bulb neurons (325). However, they are
expressed in the supporting cells, olfactory basal cells, and perivascular cells (325).
These observations not only indicate the possibility of intranasal entry of SARS-CoV-2
into a human brain but could also explain the onset of hyposmia and hypogeusia
reported at the early stage of SARS-CoV-2 infection (156, 326). It is worth remembering
that the observed neurological symptoms in SARS-CoV-2 patients may also be associ-
ated with improper blood coagulation (327–329), resulting in thrombosis of blood ves-
sels and ischemic tissue damage. This is indicated by reports describing patients with
severe SARS-CoV-2 cases who suffer seizures and impaired consciousness, which are
accompanied by ischemic stroke (330, 331). Alternatively, SARS-CoV has also been
detected in circulating monocytes (332) and has been shown to induce activation of
microglia (321, 333). Furthermore, both monocytic and lymphocytic infiltrates were
observed in the brain tissue of a deceased SARS-CoV patient, indicating possible neu-
roinflammation during SARS-CoV infection (334). It remains unclear if SARS-CoV-2 can
similarly manipulate host innate immune responses to induce inflammatory damage
to the blood-brain barrier in order to disseminate into the central nervous system.
However, using choroid plexus organoid models, Pellegrini et al. and Fadi et al. demon-
strated that SARS-CoV-2 can disrupt the blood-cerebrospinal fluid barrier. They found
that SARS-CoV-2 preferentially infected mature choroid plexus epithelium, which abun-
dantly expressed ACE2. This resulted in the disruption of tight junction integrity and
subsequent leakage of cerebrospinal fluid (318, 335). Nevertheless, further studies
using neuronal tissue and blood-brain barrier models are required to investigate SARS-
CoV-2 dissemination and pathology in the neurological system.

SARS-CoV-2: a Systemic Infection Clinical Microbiology Reviews

April 2021 Volume 34 Issue 2 e00133-20 cmr.asm.org 15

 on January 14, 2021 by guest
http://cm

r.asm
.org/

D
ow

nloaded from
 

https://cmr.asm.org
http://cmr.asm.org/


The Eye

Eyes were suggested to be potential entry points for SARS-CoV-2 and secondary
infection sites. Clinical signs of SARS-CoV-2 infection in the eyes ranged from mild (e.g.,
chemosis, epiphora, and conjunctival hyperemia) to visual impairment, ophthalmopa-
resis, and retinitis (336–338). In multiple cases, viral RNA was detected in ocular dis-
charges of SARS-CoV-2 patients both with and without conjunctivitis. The onset of con-
junctivitis in some cases precluded the respiratory symptoms (339, 340), and it is
hypothesized that SARS-CoV-2 may be transferred from the eyes to the respiratory sys-
tem through the nasolacrimal duct connecting the eyes and the nasal cavity (341).
Conversely, an onset of ophthalmic clinical signs had also been reported at later stages
of COVID-19 (342). Among the components of the human ocular system, expression of
SARS-CoV-2 receptor ACE2 had been observed in the conjunctival epithelium, retina,
and aqueous humor (343–346). More recently, Makovoz et al. used eye organoids rep-
resenting hESC-derived self-formed ectodermal autonomous multizone of ocular cells
(SEAM) to study SARS-CoV-2 ocular infection (347). This study identified distinct sub-
sets of ACE2-expressing corneal cells, furin-expressing corneal cells, and a presumptive
subset of TMPRSS2-expressing corneal cells by bulk RNA sequencing (347). Subsequent
infection of eye organoids revealed low levels of SARS-CoV-2 replication in a central
cornea and efficient replication in the corneal limbus—the site of corneal and conjunc-
tival stem cells (347, 348). Moreover, type I and III interferon responses appeared to be
suppressed during SARS-CoV-2 infection of eye organoids, but the NF-κB-mediated
inflammatory response was upregulated (347). The replication trend of SARS-CoV-2
observed in the eye organoid was similar to what was observed in intestinal organoids
by Lamers et al. (136), highlighting the preference of SARS-CoV-2 for actively proliferat-
ing cells. Taking the data together, further studies are required to understand the role
of the ocular tissues on SARS-CoV-2 spread.

REPRODUCTIVE SYSTEM

Among the organs affected during COVID-19, reproductive organs have been
reported rarely (349, 350). Only a limited number of studies on this topic have been
carried out. Bioinformatic analyses and data mining suggest that the testes show a
high level of expression of the ACE2 protein (82, 85, 351–354), with the spermatogonia,
seminiferous ducts (Sertoli cells), and Leydig cells showing the highest levels (353,
355–362). While the majority of publications postulate that the testes express ACE2,
infection of the male reproductive organs by SARS-CoV-2 is not obvious (363, 364).
Bian et al. reported the presence of SARS-CoV-2 in testes tissue of deceased COVID-19
patients. This was demonstrated using PCR, immunohistochemistry, and TEM (63). A
similar study was carried out by Yang et al., but in this case, 11 of 12 samples tested
negative for SARS-COV-2 (365). Li and colleagues evaluated the presence of SARS-CoV-
2 in semen samples from 23 COVID-19 patients in the acute or recovery stage and
found 6 of 38 samples positive (366). Song et al. reported that SARS-CoV-2 was not
present in semen samples obtained from 12 patients during the recovery phase or in a
testicular biopsy specimen from a patient who died during the acute phase (367). In
agreement with this, Pan et al. showed that SARS-CoV-2 was not detected in the
semen of 34 adult Chinese males recovering from COVID-19 (368), Guo et al. showed
that SARS-CoV-2 was not detected in 23 samples collected from patients in the acute
and recovery infection phases (369), and Nora et al. did not detect SARS-CoV-2 in 18
semen samples from recovered patients or in two samples from patients with active
COVID-19 infection (370). Besides, the virus was not detected in prostatic secretions
from 23 COVID-19 patients (371). It is worth noting that Ma et al. and Xu et al. analyzed
sex-related hormones levels in 119 and 39 men infected with SARS-CoV-2, respectively.
Ma et al. reported some alterations in the hormone levels, whereas Xu et al. did not
observe such changes (372, 373).

Except for some transcriptomic studies that evaluated the susceptibility to infection
of the female reproductive system (85, 352, 353, 361, 374), data on this subject are
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limited (19, 375). Jing et al. reported ubiquitous expression of ACE2 in the ovary,
uterus, vagina, and placenta (376). Goad et al., using single-cell sequencing of uterus,
myometrium, ovary, fallopian tube, and breast epithelium, found that none of these
tissues had high expression of ACE2 and none of them showed coexpression with
TMPRSS2 (377). Qiu et al. tested vaginal fluid from 10 women with severe COVID-19
disease, but all the samples were negative for the virus (378). Similar results were
obtained in other studies that evaluated vaginal fluid samples and breast milk samples
from pregnant patients (379–382). Studies of pregnant women with COVID-19 showed
that placenta, amniotic fluid, and/or cord blood analysis results were also negative for
SARS-CoV-2 (160, 382–387). However, Fenizia et al. analyzed the presence of the viral
RNA in nasopharyngeal swabs from the mothers and the newborns; vaginal swabs;
maternal and umbilical cord plasma, placenta, and umbilical cord biopsy specimens;
amniotic fluids; and milk. SARS-CoV-2 RNA was found in one blood sample from an
umbilical cord, two placenta samples, one vaginal mucosa sample, and one milk sam-
ple (388). Additionally, three studies identified an infection in the placenta by qPCR,
histological examination, and electron microscopy (389–392). It is difficult at this stage
to ultimately determine the long-term effect of the infection in pregnant women for
the women and their newborns (393–399). Some studies have shown the absence of
vertical transmission or complication in the pregnancy or neonates (383, 386, 387, 395,
400, 401), and there are other studies that have reported vertical transmission of the vi-
rus (388, 402–404).

Taking into account all of the cited studies, it is evident that the subject should be
further evaluated to determine the effect of SARS-CoV-2 on male and female reproduc-
tive systems. There is no evidence of sexual transmission of SARS-CoV-2, but the conse-
quences regarding male fertility as well as female fertility and perinatal outcomes are
not evident at the moment. Nevertheless, it should be a topic of further study and dis-
cussion (396, 405–408).

FIG 6 Organs affected by COVID-19. The solid and dotted lines indicate direct and indirect viral
replication, respectively.
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CONCLUSIONS AND KEY TAKEAWAYMESSAGES

SARS-CoV-2 is a recently emerged virus that has caused a pandemic that has para-
lyzed the world. Our understanding of the threat is still limited, and aside from the
mortality rate, the long-term consequences of the infection must be discussed widely,
particularly when different epidemic management strategies are considered. While the
main COVID-19 outcome involves lungs, other organs are also reported to be affected
(Fig. 6). During the COVID-19 pandemic, we have witnessed an incredible boost in the
research on coronaviruses. In our opinion, some of the most important work encompasses
the employment of human organoids, which are three-dimensional, miniaturized, and sim-
plified versions of natural organs. The organoids may be used to mirror in vivo tissue orga-
nization and complexity, and the relevance of these models has been proven well, as the
results obtained using organoids were in several cases confirmed in the clinic. Importantly,
the possible sites of infection impact the person-to-person transmission that shapes the
pandemic. Some of the observations, however, still require confirmation in vivo, but even
the slight possibility of permanent damage to neural or reproductive tissue, cardiac tissue,
or blood vessels in children needs to be verified; this is because adoption of the herd im-
munity concept may result in a permanent detrimental effect on society that extends
beyond that of the pandemic itself.
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